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Diffusion in zeolites is s tudied by means  of  Monte  Carlo me thods  and the general ized Max-  
wel l -S te fan  theory  of  irreversible the rmodynamics .  The  influence of  the surface occupancy ,  the  
surface s t ructure ,  and the  surface chemical  potential  on one- and mul t i component  surface diffusion 
has  been investigated.  Mass  t ransfer  has  been simulated in one- and two-dimensional  zeolitic 
channel  s t ructures .  For  the descript ion of  the sorption process  two different models  have  been  
applied, a Langmui r  model  and  a model  with repulsive interactions between sorbed molecules .  The 
one -componen t  Fick diffusion coefficient, in the case of  the  Langmui r  adsorpt ion model ,  is found 
to be independent  of  the  surface occupancy  and depends  weakly on the d imens ion  of the  lattice. 
Tracer  diffusion on a one-dimensional  lattice shows a linear dependence  be tween  the mean  square  
d i sp lacement  of  labelled molecules  and the square  root  of  time. The mean  square  d isp lacement  in 
the case of  t racer  diffusion on the two-dimensional  lattice follows the Einstein  relation. The  uptake  
behaviour  of  b inary mixtures ,  co- and counter-diffusion,  on the two-dimensional  lattice as obtained 
from the Monte  Carlo s imulat ions  is in agreement  with a single-file diffusion model.  The  single-file 
diffusion matr ix can be considered as a limiting case of the generalized Maxwel l -S t e fan  formulat ion.  
The resul ts  of  the Monte  Carlo s imulat ions and the single-file diffusion model  show that  the zeolitic 
s t ructure  has  an influence on mass  t ransfer  rates in tracer flow and counterdiffusion.  The coupling 
be tween  surface fluxes present  in the case of  the t ransient  uptake of a mul t icomponent  mixture  is 
demons t ra ted .  © 1992 Academic Press, Inc. 

I N T R O D U C T I O N  

Diffusion in molecular sieves can be mod- 
elled as a sequence of elementary events. 
Molecules are localized on adsorption sites 
and mass transfer takes place by molecules 
jumping between nearest-neighbour sites 
[see Riekert (l) and Ruthven (2)]. Several 
previous workers have used a discrete sur- 
face diffusion model for the description of 
mass transfer in (micro-) porous media, both 
theoretical and computational. Reed and 
Ehrlich (3, 4) studied one-component sur- 
face diffusion for different chemical poten- 
tials by means of a lattice-gas model and 
Monte Carlo methods. Using the quasi- 
chemical approximation the influence of 
interactions between adsorbed nearest 

1 TO w h o m  cor respondence  should be addressed.  

neighbour molecules on the jump rate is in- 
vestigated. Sundaresan and co-workers (5, 
6) and Theodorou and Wei (7) have used 
a lattice-gas model to study diffusion and 
reaction in zeolite crystals. Zhdanov (8-10) 
derived general relations for the description 
of surface diffusion in the framework of the 
lattice-gas model, for one- and two-compo- 
nent sorption. Lee and O'Connell (11, 12) 
developed a nonequilibrium statistical me- 
chanical description for adsorption and sur- 
face diffusion on homogeneous surfaces. A 
stochastic model based on the Markov pro- 
cess formulation has also been proposed 
[see Patwardhan (13) and Tsikoyiannis and 
Wei (•4)]. In the Markov process formula- 
tion every state is associated with a distribu- 
tion function which gives the probability of 
occurrence of the next event. Tsikoyiannis 
and Wei (14) also used Monte Carlo simula- 
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tions to study tracer and binary diffusion in 
channel-type structures with different lat- 
tice dimensions. 

Using Monte Carlo methods one- and 
two-component mass transfer in zeolites has 
been studied by a random-walk approach 
for different surface structures. Palekar and 
Rajadhyaksha (15, 16) applied this method 
to study one-component uptake and binary 
diffusion in two different zeolitic pore struc- 
tures, a pore open at one end and a pore 
open at both ends. Pitale and Rajadhyaksha 
(17) simulated tracer diffusion in a one- 
dimensional channel structure as well as in 
a cage-type structure. Emig and co-workers 
(18, 19) determined, from Monte Carlo sim- 
ulations of mass transfer in a two-dimen- 
sional zeolite grid, one-component, tracer, 
and binary diffusion coefficients as a func- 
tion of the occupancy for cage-type struc- 
tures. 

The Monte Carlo simulations can provide 
new insights into multicomponent surface 
diffusion phenomena, especially the depen- 
dence of the mass transfer rates on the sur- 
face occupancy and the dimension of the 
lattice. A number of workers have found, 
using Monte Carlo simulations based on the 
single-file diffusion approach, a non-Fickian 
behaviour in the case of tracer diffusion in 
a one-dimensional pore structure (7, 17). 

A possible method to study multicompo- 
nent surface diffusion is by means of a 
single-file diffusion model. The single-file 
diffusion model uses the zero-coverage dif- 
fusion coefficients and is applicable to 
channel-type structures where molecules 
are not able to pass one another. Quereshi 
and Wei (20, 21) performed counter- and co- 
diffusion experiments of benzene and tolu- 
ene in ZSM-5 to examine the effects of the 
amount adsorbed of the two components on 
the diffusion coefficients. The results are in 
good agreement with a theoretical single-file 
model. 

In the present work, one- and multicom- 
ponent surface diffusion are studied by 
Monte Carlo methods and the generalized 
Maxwell-Stefan (GMS) theory of irrevers- 

ible thermodynamics, cf. Krishna (22). Our 
main objective is to verify the applicability 
of a surface diffusion model, in terms of the 
Maxwell-Stefan equations, for the descrip- 
tion of diffusion in micropores. 

An important contribution to mass trans- 
fer in molecular sieve materials, e.g., zeo- 
lites, is governed by surface or micropore 
diffusion. Diffusion in micropores is an acti- 
vated process and can be modelled as ad- 
sorbed molecules performing random jumps 
between potential energy minima, repre- 
sented by fixed sites. Modelling of multi- 
component mass transfer in zeolites is im- 
portant for catalysis and for separation 
applications. Diffusion affects conversion 
and selectivity and the successful operation 
of molecular sieves in separation processes 
is based on a difference in diffusion coeffi- 
cients. 

A number of sorption and diffusion pro- 
cesses in zeolitic channel structures have 
been simulated to gain more insight into 
multicomponent mass transfer in the con- 
figurational regime. In practice, a random 
walk method has been used to simulate 
one- and multicomponent diffusion. The 
simulations have been performed in one- 
and two-dimensional surface structures, 
with respectively two and four nearest- 
neighbour sites. In the following, the two 
surface structures are referred to as pore 
and square lattice. The influence of the ther- 
modynamics of the adsorbed phase has been 
studied by using two different adsorption 
models, namely the Langmuir model, char- 
acterized by the absence of interactions be- 
tween the adsorbed molecules, and a model 
of localized adsorption with a repulsive in- 
teraction between adsorbed nearest- 
neighbour molecules. 

The Monte Carlo simulations can be di- 
vided into three parts: 

First, to investigate the influence of the 
amount adsorbed on surface diffusion, one- 
component uptake experiments and tracer 
flow have been simulated for both the pore 
and the square lattice structure and with the 
two different adsorption models. 
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Second, the effect of the direction of mass 
transfer on the rates of adsorption and desorp- 
tion has been investigated for counterdiffu- 
sion of a binary mixture on the square lattice. 

Third, the coupling effects between differ- 
ent mixture components have been stud- 
ied in the case of transient uptake of a 
binai-y and a ternary mixture on the square 
lattice. 

Furthermore, the results obtained from 
these simulations are compared with the 
GMS theory for multicomponent surface 
diffusion. Elements of the discrete surface 
diffusion model can be incorporated into the 
continuum GMS theory through the GMS 
or intrinsic diffusion coefficients. The multi- 
component uptake profiles produced by the 
Monte Carlo simulations can be explained 
by a single-file diffusion model and the lin- 
earized theory of multicomponent mass 
transfer (23), using discrete GMS diffusion 
coefficients. As will be shown, the single- 
file diffusion model can be regarded as a 
limiting case of the GMS theory. 

METHOD 

Generalized Maxwell-Stefan (GMS) 
Theory for Multicomponent 
Surface Diffusion 

In a multicomponent adsorbed phase the 
transport properties of one component are 
affected by the presence of the other compo- 
nents. The driving force, the gradient in the 
chemical potential, is a function of the total 
amount adsorbed. The relations for the de- 
scription of mass transfer are coupled 
through the multicomponent equilibrium 
isotherm [see Ruthven (2) and Marutovsky 
and Billow (24)]. 

Using the idea of adsorbed molecules 
moving between vacant sites, a description 
of multicomponent surface diffusion based 
on the generalized Maxwell-Stefan theory 
of irreversible thermodynamics has been 
given by Krishna (22). In this theory the 
vacant sites (V) on the surface are viewed 
as the (n + 1)th component in the mixture. 
The GMS formulation uses a friction model 
for the description of multicomponent mass 

transfer, based on the information of the 
transfer rates of individual components. 

The GMS theory provides the following 
relation for the Fick diffusion coefficient 
matrix, which in general is nondiagonal indi- 
cating the coupling between the different 
mixture components 

[O] = [B]-J[F] (1) 

with the matrix of GMS diffusion coeffi- 
cients 

Oi n~l Oj 
Bii = "~i----v- ~- j = 1 "~ij 

B° = -Oi ( ~ j  OivI ) (2) 

and the matrix of thermodynamic factors 

a ln(~) 
F 0. = 0/ 0 - - -~ i  (3) 

with f / the  fugacity of component i in the 
bulk phase, determining the surface chemi- 
cal potential 

tz i = i ~° + RgTln(fi). (4) 

These relations are the basis of the contin- 
uum GMS theory and with this result the 
different diffusion processes can be de- 
scribed. 

Single-File Diffusion 

The connection between the Monte Carlo 
simulations of surface diffusion, in channel- 
type zeolites, and the GMS formulation is 
made through the single-file diffusion ap- 
proach. In the applied Monte Carlo method 
and surface structures considered mole- 
cules are likely to move in a single-file. The 
simulated diffusion processes correspond to 
mass transfer in channel-type zeolites, for 
example mordenite and silicalite, where 
sorbed molecules are not able to pass one 
another. 

Based on a lattice-gas model a number 
of previous workers have described surface 
diffusion phenomena, making use of the 
quasi-chemical approximation to determine 
the surface chemical potential. 
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One-component diffusion. For one-com- 
ponent surface diffusion Reed and Ehrlich 
(3) and Zhdanov (9) have derived the follow- 
ing expression for the Fick diffusion coeffi- 
cient, by taking the chemical potential the 
driving force for mass transfer 

O(t~/RgT) 
Dw(O) = )~2v(O) 01n0 ' (5) 

with ~ a constant displacement, the distance 
between two adjacent sites, and v the jump 
frequency of the sorbed molecules. In terms 
of the GMS formulation this reads for the 
one-component diffusion coefficient 

Dw(O 0 = -Dw(00F, (6) 

with the discrete GMS diffusion coefficient 
given by 

"~Iv(O1) = 4 ~k2/)l(01)" (7) 

As a result of the dependence of the jump 
frequency on the surface occupancy, the 
thermodynamics of the adsorbed phase has 
an influence on the surface migration. In 
the case of Langmuir adsorption the jump 
frequency at an arbitrary occupancy can be 
written in terms of the jump frequency for 
one molecule on an empty lattice. The GMS 
diffusion coefficient then becomes 

_Olv(01) = Z X2Vl(0)( 1 _ 01 ) 
(8) 

= g)w(O)Ov 

Two important extensions can be made; 
first, inclusion of interactions between ad- 
sorbed species, and second the description 
of multicomponent adsorbed species. 

To include interactions between adsorbed 
mixture components the chemical potential 
must be modified; to indicate deviations 
from the Langmuir model we write 

Id, i = tZ 0 + RgTtzi ,  L + RgTl,~i,i, (9) 

with L and I denoting the contribution from 
the Langmuir model and the interactions, 
respectively. 

The Fick diffusion coefficient then reads 

Z ~k21,1(01 ) Dw(OI) = -~ 

1 1 0(/-*1 i/RgT)~, 
- 0 ,  + / 

(lO) 

which is identical to Eq. (6), with a modified 
thermodynamic factor. For the Monte Carlo 
simulations the thermodynamic factor can 
be determined with Eq. (3). 

In Eq. (10) the jump rate v(O) is also af- 
fected by the interactions. The influence of 
the interactions between molecules ad- 
sorbed on nearest-neighbour sites on the 
jump rate and the chemical potential can 
be evaluated by use of the quasi-chemical 
approximation [see, for example, Reed and 
Ehrlich (3)]. 

Multicomponent diffusion. The descrip- 
tion of multicomponent surface diffusion in 
the single-file diffusion approach is based 
on the zero-coverage diffusion coefficients 
[see, for example, Sundaresan and Hall (6), 
Zhdanov (10), and Qureshi and Wei (20)]. 
Starting with different models the same ex- 
pression for the binary Fick diffusion coef- 
ficient matrix, Eq. (l 1), has been derived. 

For a ternary system with Langmuir ad- 
sorption the Fick diffusion coefficient ma- 
trix, in the single-file diffusion model, is 
given by 

[D] = (©0 v(0) 

(1-°2°101)  
02 1 -  

(11) 

Extension to a system with an arbitrary 
number of components (n > 3) is straightfor- 
ward. This result will be used to compare 
the results obtained from the Monte Carlo 
simulations of multicomponent mass trans- 
fer in channel-type zeolites with theory. 

The Fick diffusion matrix in the case of 
the single-file diffusion model can also be 
derived from the GMS theory. From Eq. 
(1) it follows that the Fick diffusivity is a 
combination of Maxwell-Stefan diffusivi- 
ties and thermodynamic effects. The Max- 
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well-Stefan diffusion coefficient has the 
meaning of an inverse drag coefficient. 
Comparing Eq. (1) for the Fick diffusion 
coefficient, with the dependence of the GMS 
diffusion coefficients on the surface occu- 
pancy given by Eq. (2), with Eq. (11) it fol- 
lows that the single-file diffusion model uses 
only zero-coverage diffusivities of the indi- 
vidual components, represented by ©iv. 
The dependence of the one-component dif- 
fusivities on the surface occupancy and the 
contribution of the counter-exchange coef- 
ficient, ©0, are not taken into account in the 
single-file diffusion model. Equation (11), 
for the Fick diffusion coefficient matrix, fol- 
lows from the GMS equations by taking 0; 

0 (i ~ V); this means that Or-* 1, in Eq. 
(2) and use of Eq. (8). As a consequence the 
counter-exchange coefficient g)12 drops out 
of the equations. We see that the depen- 
dence of the one-component GMS diffusion 
coefficients on the surface occupancies can- 
cels against a part of the thermodynamic 
effects. In other words if we take the B ma- 
trix, Eq. (2), independently of the surface 
occupancy of the adsorbed components, a 
single-file diffusion model is obtained. In the 
single-file diffusion model the mixture com- 
ponents exert no or very little drag on one 
another, due to the pore size, and the Fick 
diffusion coefficient matrix is independent 
of the vacancy Ov. 

Equation (I1) is the single-file diffusion 
matrix as presented by Qureshi and Wei (cf. 
Eq. (6) of Ref. (21)). However, no informa- 
tion is given about this choice of the diffu- 
sion coefficient matrix in relation to the type 
of zeolite. 

Tracer diffusion. A special case of binary 
diffusion is given by tracer diffusion. 
Applying the single-file diffusion model to 
tracer diffusion the following relation, in the 
case of Langmuir adsorption, is obtained 

D* =D11-D12  
(12) 

= ~lv(O) 

with the use of relation (8). In the single-file 
diffusion model with Langmuir adsorption 
the tracer diffusion coefficient decreases lin- 

early with increasing surface occupancy. 
This has been derived before by Riekert (1). 
For the general case this can be extended 
by use of equation (10). 

Monte Carlo Method 

Using Monte Carlo simulations sorption 
and diffusion phenomena in microporous 
media, representing zeolitic channel struc- 
tures, have been studied. The simulations 
have been performed for two different sur- 
face structures and two different adsorption 
models. 

The surface structures used are a one- 
dimensional pore structure and a two-di- 
mensional square lattice. The adsorption 
sites are uniformly distributed and in the 
case of the lattice placed at the channel in- 
tersections, forming an energetically homo- 
geneous surface with respectively two and 
four nearest-neighbour sites. The bulk 
phase is represented in the same way by 
localized sites, which can be considered as 
an extension of the lattice. Adsorption from 
the bulk phase takes place only at the sites 
at the boundaries of the surface. For the 
square lattice the approach has been used 
that for a number of zeolites the most stable 
sites are localized at the channel intersec- 
tions. 

To investigate the influence of thermody- 
namics on surface diffusion two different 
models have been used for the description 
of the adsorption processes. The rates of 
adsorption and desorption can be expressed 
in terms of probabilities in the following 

rate of adsorption 1 - 01 
rate of desorption 01. 

Model 2: rate of adsorption 1 - 0f 
rate of desorption 01. 

The probability of a site being occupied is 
given by the fractional surface occupancy 
01. 

The first model corresponds to the Lang- 
muir adsorption model. The probability of 
finding one empty nearest-neighbour site, 
which is equal to the probability of per- 

way: 

Model 1 : 
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forming a jump,  is given by the vacancy,  
1 - 01. 

The second model states that an activated 
molecule will always perform a jump unless 
all the nearest-neighbour sites are occupied. 
The probability for an activated molecule to 
have at least one empty nearest-neighbour 
site depends in this model on the lattice coor- 
dinate number z and is equal to 1 - 0~, with 
z equal to 2 or 4 corresponding to the pore 
and the square lattice structure, respectively. 
The second model corresponds to a model of 
localized adsorption with repulsive interac- 
tion. The movement of an activated molecule 
is always in a direction away from the occu- 
pied sites. For this model also an interaction 
parameter, 5, must be taken into account. The 
interaction parameter vanishes in the case of 
Langmuir adsorption. 

The chemical potential for  the Langmuir  
adsorption model can, for one-component  
sorption, be written as 

RgT Rg~ + In ~ . (13) 

The chemical potential for model 2 in the 
quasi-chemical approximation can be writ- 
ten as 

RgT 
~zl _ /z° ( 01 ) 

- -  R g ~  + In 

+ ~ln  .(/3 1 + 201)(1 - 01) 
+ 1 - - -~1)~  " 

(14) 

with/3 given by 

/3 = (1 - 401(1 - 01) 

exp ±t1  (, 05) 

and z the lattice coordinate number  equal 
to 1, 2, or 4 describing, respectively,  the 
Langmuir  model (model 1; e = 0) and the 
pore and the square lattice (model 2) [see, 
for example,  Reed and Ehrlich (3)]. 

We see that the Langmuir  adsorption 
model gives always the same contribution 

to the chemical potential, regardless of  the 
dimension of the lattice. The Langmuir  
model corresponds to the situation where  
the activated molecules have the possibility 
to go to only one nearest-neighbour site. 

Equations (13) and (14) are used to calcu- 
late the thermodynamic factor,  for compari- 
son of  the results of the Monte Carlo simula- 
tions with theory.  

In the Monte Carlo method the adsorption 
and diffusion process in molecular  sieves is 
modelled as a sequence of  e lementary 
events. Inside the adsorbent  the molecules 
are in the force field of  the surface, at all 
times. The migration of  the molecules is as- 
sumed to take place in the adsorbed phase 
only; there is no gas phase inside the micro- 
pores. The adsorbed molecules are exposed 
to a periodic potential field, with the adsorp- 
tion sites representing the minima of  this 
field. Simulated are two experimental  meth- 
ods used to study mass transfer phenomena  
in zeolites. Uptake experiments,  where the 
bulk gas phase is maintained at the equilib- 
rium surface occupancy values, and t racer  
diffusion experiments,  where only the be- 
haviour of the molecules on the lattice is 
considered. 

For  the Monte Carlo simulations, based 
on the random walk principle, this gives the 
following elementary steps and conditions: 

- - A  molecule is activated to execute  a 
jump and a nearest-neighbour site is se- 
lected, both at random. 

- -Th i s  molecule cannot  move  to an al- 
ready occupied nearest-neighbour site: 

Model 1: If the move in the selected direc- 
tion is not possible a new molecule is acti- 
vated, at random. 

Model 2: If the move to the selected near- 
est-neighbour site is not possible a new di- 
rection, for the same molecule,  is selected. 
If all the nearest-neighbour sites are occu- 
pied a new molecule is randomly activated. 

- - T h e r e  are no multiple jumps possible. 
- - T h e  final concentrat ion on the surface 

is given by the concentrat ion of  the bulk. 

Putting all the conditions together the 
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Monte Carlo method can be applied to ob- 
tain a solution of  the time evolution of  the 
system under consideration,  for a given set 
of  initial and boundary conditions. 

In the following sections the results of the 
Monte Carlo simulations for several cases 
will be examined. In the simulation two dif- 
ferent  parameters  are used, namely,  the 
jump f requency corresponding to an empty 
lattice and the surface occupancies at the 
beginning of  the exper iment  and the surface 
occupancy  at equilibrium. In the simula- 
tions of  one-component  and tracer  diffusion 
the jump f requency is set equal to unity (in 
arbitrary units). This is also done in the case 
of  mul t icomponent  mass transfer for  the 
jump f requency of  the slowest moving com- 
ponent.  This means that the GMS diffusion 
coefficient -Dlv becomes equal to unity. 

The Monte Carlo simulations have been 
performed on an IBM ES/9000-270. 

R E S U L T S  A N D  D I S C U S S I O N  

O n e - C o m p o n e n t  and  Tracer Di f fus ion  

The GMS theory and Monte Carlo simula- 
tions are combined to evaluate one-compo- 
nent  Fick diffusion, GMS or intrinsic diffu- 
sion, t racer  diffusion, and counter-sorption 
coefficients on one- and two-dimensional 
surface structures.  To display the results 
obtained from the Monte Carlo simulations 
a time-scale must be introduced. In the fol- 
lowing we use an arbitrary time-scale de- 
fined by the number  of  activations per site, 
which is equivalent to the inverse of the 
jump frequency.  

One-componen t .  The dependence  on sur- 
face occupancy of  the one-component  sur- 
face diffusion coefficient can be determined 
from uptake experiments.  The solution for 
a constant Fick diffusion coefficient with 
constant  boundary  conditions in terms of  
the surface occupancy is given for small 
times by 

O(t) - O(t o) = / D w t  
(16) O(t~) - O(t o) o~ ~ 12 

with a a numerical factor  depending on the 

7.0 

0.0 

z=4 

, ; ;  5335 "'" "- . .  z =2 

/ / - .  
° j ~ . J  • " ' - .  

: ~5;'f " /  z=l * 

0.0 015 1.0 

Surface occupancy 

Fie .  1. Dimens ionless  one -componen t  Fick diffusion 
coefficient as funct ion of the surface occupancy .  Re- 
sults obtained from uptake s imulat ions in a pore of  1000 
sites and on a square lattice of  250 × 250 sites, with: 
(ll) model  1, pore and lattice; (O) model  2, pore; (~1,) 
model  2, lattice. Dashed  lines are fit with quasi -chemi-  
cal approximation.  

surface structure [cf. Crank (25)]. F rom sim- 
ulations with different initial surface occu- 
pancies the diffusion coefficient as a func- 
tion of the square root  of  time can be 
evaluated. From the slope of  this linear 
graph the diffusion coefficient is readily ob- 
tained with Eq. (16). To provide the same 
driving force in all the one-component  up- 
take simulations a difference of  0.05 be- 
tween the bulk and the surface occupancy  
is used as initial condition. Fur thermore ,  to 
be able to compare  the results obtained with 
the different models the diffusion coeffi- 
cients have been normalized on the diffusion 
coefficient for an empty surface. 

Pore.  The results of  the one-component  
uptake simulations, for both adsorption 
models (z = l and z = 2), in the pore struc- 
ture are shown in Figure 1. The dimen- 
sionless Fick diffusion coefficient as a func- 
tion of  the surface occupancy is plotted. The 
results are obtained for a pore of  1000 sites, 
the pore being open at both ends. 

Square  lattice. In Fig. 1 are also shown 
the results of  the dimensionless one-compo- 
nent Fick diffusion coefficient as a function 
of the surface occupancy,  as found on a 
square lattice of  250 x 250 sites for z = 1 
and z = 4. On the square lattice the one- 
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component Fick diffusion coefficient shows 
the same behaviour as for the pore. From 
the Monte Carlo simulations it can be con- 
cluded that the one-component Fick diffu- 
sion coefficient depends weakly on the lat- 
tice coordinate number or, equivalently, the 
dimension of the lattice. For the Langmuir 
adsorption the Fick diffusion coefficient is 
independent of surface occupancy. 

For the one-component diffusion behav- 
iour with the Langmuir adsorption (model 1 
or z = 1), for both the pore and the square 
lattice, the jump rate decreases by the same 
amount as the thermodynamic factor in- 
creases [Eqs. (6) and (8)]. For model 2 the 
mobility of the adsorbed molecules on the 
square lattice first increases, due to the re- 
pulsive interaction. At high occupancies the 
mobility decreases as a consequence of the 
decrease of the number of empty sites [Eqs. 
(10) and (14)]. Also shown are the results of 
the quasi-chemical approximation. 

T r a c e r .  The influence of the surface occu- 
pancy on tracer flow can be studied by moni- 
toring the mean square displacement of la- 
belled molecules. The tracer diffusion 
coefficient for z nearest-neighbours can be 
determined from the mean square displace- 
ment with the Einstein relation 

D *  - ( R e ( t ) )  (17) 
Zt 

To exclude boundary effects in the Monte 
Carlo simulations of the mean square dis- 
placement only a number of molecules in 
the center of the surface are tagged. 

Due to the differences between the tagged 
and untagged molecules tracer diffusion re- 
quires the same approach as a binary mix- 
ture. Therefore, the surface chemical poten- 
tial must be modified to describe the 
sorption process of a binary mixture. Analo- 
gously to Eq. (14) we can write, for a binary 
mixture in the case of Langmuir adsorption, 
for the chemical potential of component 1 

ILl Juno ( Ol ) - + In (18) RgT R J  1 - 01 - 02 

and a similar relation for component 2. 

700 

0=0.1 

m m l n ~  
. . . .  

50 1'00 

(Arbitrary time-scale) 1/2 

FIG. 2. Mean square displacement versus root of  
arbitrary time-scale for different surface occupancies,  
with: (n )  0 = 0.1; (0)  0 = 0.3; (41,) 0 = 0.7. Tracer 
diffusion, obtained with model 1, in a pore with 1000 
sites. 

From Eq. (18) the following relation be- 
tween the elements of the thermodynamic 
factor matrix, Eq. (3) can be derived: 

Fll = 1 + Fl2 
(19) 

F22 = 1 + F21. 

Combining relation (19) with the expression 
for the elements of the matrix of inverted 
GMS diffusion coefficients, given by rela- 
tion (2), the GMS theory gives the following 
relation for the tracer diffusion coefficient 

D* = D l l  - DI2 

Ov ] _ ( 0 L +  02 ~----w--v) " (20) 
\ 4)12 -{- 

This relation for tracer diffusion is also inde- 
pendent of the dimension of the lattice. If 
we take in Eq. (20) -/)12 equal to ©iv, Eq. 
(12) is obtained again. 

P o r e .  In Fig. 2 the mean square displace- 
ment of tagged molecules for three different 
surface occupancies, in the one-dimensional 
pore structure, versus the square root of 
time is displayed. The linear dependence of 
the mean square displacement on the square 
root of time means that the tracer diffusion 
coefficient, for this system, cannot be ob- 
tained from the Einstein relation. With 
model 2 the same effect is found; the results 
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Fro. 3. Dimensionless tracer diffusion coefficient as 
function of  the surface occupancy,  on a square lattice 
of  250 × 250 sites, with: (n )  model  1; (O) model 2. 

are not presented.  Due to the higher mobil- 
ity of the molecules described by model 2, 
as compared to model 1, the mean square 
displacement of  tagged molecules at a given 
time is larger than for model 1. 

Square lattice. Figure 3 shows the tracer 
diffusion coefficient as a function of surface 
occupancy,  for  the two adsorption models. 
For  both adsorption models (z = 1 and z = 
4) the t racer  diffusion coefficient decreases 
with increasing surface occupancy.  For  
t racer  diffusion with the Langmuir  adsorp- 
tion isotherm (z = 1) the diffusion coeffi- 
cient decreases faster than (1 - 0). On the 
other  hand, the t racer  diffusion coefficient 
for  model 2 (z = 4) decreases more slowly 
than (1 - 0). 

The result of  the Monte Carlo simulations 
with the Langmuir  adsorption model (model 
1) for  t racer  diffusion in the one-dimensional 
pore and on the two-dimensional square lat- 
tice are in good agreement  with Monte Carlo 
results obtained by Tsikoyiannis and Wei 
(14). These results are, however ,  in contra- 
diction with results reported by Rajadhyak- 
sha et al. (26), who also found that the mean 
square displacement on a square lattice is a 
nonlinear function of  time. 

The behaviour  of  tracer diffusion ob- 
tained with model 1, Langmuir  adsorption 
on the square lattice, has also been found 
experimentally.  Using the NMR pulse field 

gradient technique, Caro et al. (27) and 
Kfirger and Pfeifer (28) have measured 
tracer diffusion of  a number  of  n-paraffins 
in silicalite. The experimental  results show 
the same behaviour  of the t racer  diffusion 
coefficient as obtained from simulations 
with model 1. For  example,  the t racer  (or 
self-) diffusion coefficient of  methane in 
ZSM-5 type zeolites (silicalite) decreases in 
almost a linear manner  on a logarithmic 
scale with increasing occupancy (cf. Fig. la  
of Ref. (27)). 

Counter-exchange and corrected diffu- 
sion coefficient. Combining the results for  
the one-component  Fick diffusion coeffi- 
cient with the results for the t racer  diffusion 
coefficient we can proceed in two ways. It 
is possible to describe tracer diffusion in 
terms of a corrected diffusion coefficient or 
by using a counter-exchange coefficient. 

In Eq. (21) the t racer  diffusion coefficient 
is expressed in terms of  a corrected diffusion 
coefficient 

D* = Do(1 - 0~) (21) 

In Fig. 4 is displayed the correc ted  diffu- 
sion coefficient D o for z = 1 and z = 4, as 
the ratio of the tracer diffusion coefficient 
D*, obtained from the Monte Carlo simula- 
tion, and the probability of  performing a 
jump (1 - oZ). From the linear relation be- 
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FIG. 4. Difihsion coefficient Do, obtained from rela- 
tion (21), and t)12, obtained from relation (20), as func- 
tion of surface occupancy, with: (C])D o model 1; ( + )  
D O model 2; ( i )  ~)~2 model 1. 
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T A B L E  1 

Input  Condit ions for Counterdif fus ion Exper iments  

Case A Case B 

Component Oi(to) Oi(tD 4)iv(O) Oi(t o) O~(t~) Div(O) 

i = I 0.00 0.70 1 0.70 0.00 1 
i = 2 0.70 0.00 20 0.00 0.70 20 

tween the corrected diffusion coefficient D O 
and the surface occupancy found for both 
models on the square lattice it can be con- 
cluded that tracer diffusion can be described 
by one parameter, which is a function of the 
total surface occupancy. 

However, in the single-file model the 
tracer diffusion coefficient, for Langmuir 
adsorption, decreases linearly with increas- 
ing surface occupancy [Eqs. (8) and (12)]. 
The deviation from the linear dependence 
can be ascribed to drag effects between 
sorbed molecules, represented by the 
counter-exchange coefficient -D12. This co- 
efficient can be determined from rela- 
tion (20). In Fig. 4 is also plotted the GMS 
counter-exchange coefficient -DI2 as a func- 
tion of surface occupancy, for the Langmuir 
model. The counter-sorption diffusivity de- 
creases with increasing surface occupancy. 

From Figs. 1 and 3 it can be concluded 
that model 1, the Langmuir isotherm, ap- 
plied to the square lattice is consistent with 
a number of experimental results of mass 
transfer in channel-type zeolites. 

Counterdiffusion of a Binary Mixture 

For separation applications the behaviour 
of mixtures with large differences between 
the individual properties is of great interest. 
In the following, the results obtained from 
the Monte Carlo simulations of multicompo- 
nent surface diffusion on the square lattice 
are discussed. 

In the case of binary counterdiffusion two 
different situations can be distinguished, ad- 
sorption of the component with the highest 
intrinsic or GMS diffusion coefficient from 
the bulk phase on the lattice replacing the 

1 . o  

0sl" . . ; ; . , , , , ' ""  ................ ~ "  ........ 

• A A 

AA~AAA A -  , , " . . . . . . . . . . . . . .  :~ 
0 . 0  A ~ A A A A . . * A A *  . . . . .  ~ . . . . . . . . . .  

0 4000 8 0 0 0  

A r b i t r a r y  t i m e - s c a l e  

F]6 .5 .  Uptake  profiles for t ransient  counterdif fus ion 
as funct ion of  arbitrary t ime-scale on a square  lattice 
of  25 × 25 sites. Data  of  case A, with: (V) componen t  
1 ; (A) componen t  2; (O) total surface occupancy  (com- 
ponent  1 + 2). 

other component with the smaller coeffi- 
cient, which then desorbs into the bulk and, 
of course, the reverse situation. 

The results of the counterdiffusion simu- 
lations, with the data of Table i, are shown 
in Figs. 5 and 6. The transient uptake pro- 
files are plotted as a function of an arbitrary 
time-scale. 

The surface coverage profiles obtained 
from the simulations show that the counter- 
diffusion process is not symmetrical. This 
holds as well for the individual components 

'° f l:il ....................................................... 
Vvvv  • 

0 . 5  V v v v v v  v AAAIAIAAIAAAAAAAAIA A~ 
VVVVvvv • AAA AAAIAAAa' 

AAAAIA AAI m ~ V v v v • v v v v  

A&AAAA A VVVVVVVVVVVVVV~VVVVV v 
AAAAA A • 

0 0  ' ' ' ' ' ' ' 
0 4000 80OO 

Arbitrary time-scale 

FXG. 6. Uptake  profiles for t ransient  counterdi f fus ion 
as funct ion of  arbitrary t ime-scale  on a square  lattice 
of  25 × 25 sites. Data  of  case B, with: (V) componen t  
1; (&) componen t  2; (O) total surface occupancy  (com- 
ponent  1 + 2). 
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FIG. 7. Analytical result for a plane sheet obtained 
with the single-file diffusion matrix for uptake profiles 
in the case of  transient counterdiffusion, as function 
of  Fourier  number.  Data of case A, with: ( - - - - - - )  
component  1; ( . . . . .  ) component  2; ( ) total sur- 
face occupancy (component  1 + 2). 

as for the profiles of the total amount ad- 
sorbed. 

An analytical solution for the uptake pro- 
files of mixtures can be obtained from the 
GMS theory combined with the linearized 
theory of multicomponent mass transfer 
[see Krishna and Standart (23) and Krishna 
(22)]. Analytical results of transient profiles 
as a function of the Fourier number, Fo = 
©wt/12,  for the two counterdiffusion pro- 
cesses are given in Figs. 7 and 8, with the 
same conditions as in cases A and B. The 
profiles are obtained by using the single-file 
diffusion matrix, Eq. (11), and the solution 
for a plane sheet with a constant surface 
concentration [cf. Crank (25)] 

O(t) - O(to) 8 ~ 
1 

O ( G )  - O( to )  = - - ~ 5 , ~ o  

1 ( (2n + 1)2rr2D,vt~ (22) 
(2n + 1) 2 exp - 12 j .  

The same has been done with the complete 
GMS theory for a cage type zeolite, by 
Krishna, for a particle with a spherical ge- 
ometry (cf. Fig. 10 of Ref. (22)). 

From the different figures for counterdif- 
fusion, Figs. 5-8 and Fig. 10 of Ref. (22), it 
is clear that the approach to equilibrium of 
the components depends on the surface 

structure. The single-file diffusion model 
predicts the same behaviour as the Monte 
Carlo simulations. For the approach to equi- 
librium, in channel-type structures, we see 
that the desorption process is faster than the 
adsorption process, for the same compo- 
nent. In cage-type structures the opposite 
holds. 

The effect of the influence of the direction 
of mass transfer on the rates of adsorption 
and desorption for different types of zeolites 
has been measured experimentally. Results 
of counterdiffusion for the system benzene/ 
toluene/ZSM-5 are presented by Tsikoyi- 
annis and Wei (29) and results for counter- 
diffusion of liquid hydrocarbons in zeolite 
NaY are presented by Moore and Katzer 
(30). The experimental results for the chan- 
nel-type structure ZSM-5 confirm the out- 
come displayed in Figures 5-8. 

The difference in the uptake behaviour for 
different surface structures can be explained 
in terms of a different contribution of the 
counter-exchange coefficient ©f in the Fick 
diffusion coefficient matrix. In channel-type 
structure the counter-exchange between the 
sorbed molecules is more restricted, due to 
blockage by the sorbent structure and other 
adsorbed molecules, than in cage-type 
structures. From the analytical results it fol- 
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FIG. 8. Analytical result for a plane sheet  obtained 
with the single-file diffusion matrix for uptake profiles 
in the case of  transient counterdiffusion, as function 
of  Fourier number. Data of  case B, with: ( - - - - - - )  
component  1; ( . . . . .  ) component  2; ( ) total sur- 
face occupancy (component  1 + 2). 
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FIG. 9. Transient uptake profiles for binary sorption 
as function of  the square root of  arbitrary time-scale. 
Data of  case C on a square lattice of  25 × 25 sites, 
with: (V) component  1; (&) component  2; (O) total 
surface occupancy (component  1 + 2). 
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FIG. 10. Analytical result for a plane sheet obtained 
with the single-file diffusion matrix for transient uptake 
profiles of  a binary mixture as function of  the square 
root of Fourier number. Data of  case C, with: ( - - - - - - )  
component  1; ( . . . . .  ) component  2; ( ) total sur- 
face occupancy (component  1 + 2). 

lows that the cross-coefficients Dij in the 
single-file diffusion matrix, Eq. (11), are al- 
ways positive; however, in the complete 
GMS diffusion matrix given by Eqs. (1)-(3) 
the cross-coefficients can be positive as well 
as negative. 

Transient Uptake of Binary and 
Ternary Mixtures 

Two multicomponent uptake experiments 
have been simulated (see Table 2). Case C 
is an example of a binary mixture with a fast- 
moving less-strongly-adsorbed component 
and a slow-moving more-strongly-adsorbed 
component. In Fig. 9 the binary uptake pro- 
files and the total amount sorbed are shown. 
In case D simultaneous uptake of three com- 
ponents on the lattice is considered. The 
ternary uptake profiles are shown in Fig. 11. 
The analytical solutions for the two cases 
are displayed in Figs. 10 and 12. 

For the case of binary transient uptake 
Monte Carlo simulations give a maximum in 
the profile of the faster-moving less- 
strongly-adsorbed component (component 
2). The maximum value in the surface occu- 
pancy is considerably higher than the value 
at equilibrium. The uptake profile of the 
slow-moving more strongly adsorbed com- 
ponent (component 1) increases monoto- 

nously, during which the weakly adsorbed 
component is being replaced, after some 
time. 

This binary behaviour has also been ob- 
served experimentally. For example, binary 
uptake profiles for the system methane/ni- 
trogen/chabazite have been measured by 
Habgood (31) and for the system n-heptane/ 
benzene/zeolite NaX by K~irger et al. (32) 
and K/irger and Billow (33). 
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FIG. 11. Transient uptake profiles for ternary sorp- 
tion as function of  the square root of  arbitrary time- 
scale. Data of case D on a square lattice of 25 × 25 
sites, with: (V) component  1; (41,) component  2; (A) 
component  3; (O) total surface occupancy (component  
1 + 2 + 3 ) .  
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TABLE 2 

Input Conditions for Transient Uptake Experiments 

Case C Case D 

Component Oi(l O) Oi(t~) g)iv(O) Oi(to) Oi(t~) ©iv(O) 

i = 1 0.00 0.85 1 0.00 0.65 1 
i = 2 0.00 0.10 50 0.00 0.20 10 
i = 3 0.00 0.10 50 

In the case of ternary uptake two maxima 
are observed. Both the maxima in the sur- 
face occupancies are higher than the values 
at equilibrium. The uptake profile of the 
component with the lowest diffusion coeffi- 
cient increases monotonically with increas- 
ing time. 

Experimental results for the uptake pro- 
files of a ternary mixture, toluene, p-xylene, 
and n-propyl benzene, in H-ZSM-5 have 
been reported by Choudhary et al. (34). 
They have found a total of two maxima, one 
in every uptake profile of the two fastest- 
moving species. The slowest-moving most- 
strongly adsorbed species has no maximum 
in its uptake profile. 

Furthermore, from the binary uptake pro- 
files it is clear that there are two points im- 
portant for separation applications. These 
are the conventional equilibrium selectivity 
process and a new diffusive selectivity pro- 
cess requiring a much shorter residence 
time. 

The results from the Monte Carlo simula- 
tions are in good agreement with analytical 
results for a plane sheet obtained from the 
single-file diffusion model (Figs. 10 and 12). 
The theoretical uptake curves for multicom- 
ponent mixture are quantitatively in good 
agreement with experimental results. For 
small times the uptake profiles are linear 
with the square root of time, or the square 
root of Fourier number. Furthermore, the 
uptake process in channel type structures, 
as described by the single-file diffusion 
model, is much slower than the uptake pro- 
cess in cage type structures, as described by 
the complete GMS theory. The maximum 

value in the surface occupancy, in the case 
of the binary uptake, of component 2 pre- 
dicted with the single-file diffusion model 
occurs at about (1/50)th of the time to reach 
the equilibrium values. 

For a cage-type structure, described with 
the complete GMS theory, the maximum in 
the uptake profile of the faster-moving less- 
strongly-adsorbed component is reached at 
about a sixth of the time it takes to reach 
equilibrium (cf. Fig. 8 of Ref. (22)). 

The Monte Carlo simulations and the ana- 
lytical results clearly demonstrate the cou- 
pling between the surface fluxes of the 
sorbed molecules. From the theoretical con- 
siderations, the Monte Carlo simulations 
and the GMS theory, it is clear that the prop- 
erties of the fast-moving species are the 
most affected by the presence of other 
sorbed species. The slowest-moving species 
in the mixture shows an uptake behaviour 
similar to one-component mass transfer. 
Comparing the single-file diffusion model 
with the GMS model, diffusion takes place 
at a rate five to ten times higher when 
counter-exchange is important. 

Transient uptake of multicomponent mix- 
tures have also been simulated with adsorp- 
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FIG. 12. Analytical result for a plane sheet obtained 
with the single-file diffusion matrix for transient uptake 
profiles of a ternary mixture as function of the square 
root of Fourier number. Data of case D, with: ( - - - - - - )  
component 1; ( - - - - - )  component 2; ( . . . . .  ) component  
3; ( ) total surface occupancy (component 1 + 

2 + 3 ) .  
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tion model 2. However, the uptake profile 
with this model for both the counter- and 
the co-diffusion processes are similar to the 
profiles obtained with model 1. In general 
the uptake with model 2 is faster than in the 
case of model 1. 

CONCLUSIONS 

Using the transient uptake technique, dif- 
fusion of multicomponent mixtures in mo- 
lecular sieve materials has been studied the- 
oretically. With the Monte Carlo method 
transient uptake profiles of one- and multi- 
component systems have been simulated• 
Also tracer diffusion has been simulated• 
The Monte Carlo simulations are based on 
a model where adsorbed m01eculesjum p be- 
tween nearest-neighbour s~1es. The results 
of the Monte Carlo simulations have been 
compared with theoretical models for multi- 
component diffusion and some published 
experimental results• 

From the theoretical and computational re- 
sults it can be concluded that a surface diffu- 
sion model can be applied to describe diffu- 
sion of mixtures in molecular sieve materials• 
In this work we have showed that several 
features of multicomponent mass transport in 
zeolites can be described and predicted by a 
surface diffusion model, based on one-com- 
ponent mass transport data. 

Two theoretical models, the GMS formu- 
lation and a single-file diffusion model, for 
the concentration dependence of the Fick 
diffusion coefficient matrix are compared• 
The uptake profiles for multicomponent dif- 
fusion obtained from Monte Carlo simula- 
tions are in good agreement with results pre- 
dicted with an analytical single-file diffusion 
model. 

The single-file diffusion matrix can be re- 
garded as a limiting case of the GMS theory. 
However, the assumptions made in the deri- 
vation need some extra investigation, espe- 
cially, on the relation between the counter- 
exchange coefficient and the type of adsor- 
bent structure• 

From the results of the Monte Carlo simu- 
lations a new effect has been indicated, 

namely, that the type of adsorbent structure 
(molecular sieve carbon and cage-type (or 
large port) zeolites vs channel-type (or small 
port) zeolites) has an influence on the time 
dependence of both tracer diffusion and the 
uptake profiles in the case of multicomponent 
mixtures• If counter-exchange is absent diffu- 
sion takes place at a rate 5 to 10 times higher, 
depending on the specific conditions• 

Simulations of uptake profiles clearly 
show the coupling between surface fluxes 
of mixture components. A combination of 
the analytical and computational approach 
can help to determine the concentration 
dependence of the Fick diffusion coeffi- 
cient. 

The major advantages of a Monte Carlo 
method are clear; a systematic approach can 
be followed to study macroscopic diffusion 
phenomena of mixtures in micropores. 
However, a careful comparison between the 
theoretical and computational results on the 
one hand and experimental observations on 
the other hand is necessary• The compari- 
sons made in this work confirm the potency 
of both the GMS and the Monte Carlo ap- 
proach. 

APPENDIX: NOTATION 

[B] matrix of GMS diffusion coeffi- 
cients (m z s- 1) 

[D] matrix of Fick diffusion coeffi- 
cients (m 2 s -  1) 

D* tracer diffusion coefficient (m 2 s - ~) 
D o corrected diffusion coefficient (m 2 

s - l )  

Dlv one-component Fick diffusion co- 
efficient (m 2 s-i) 

-Dij GMS diffusion coefficient (i,j = ! 
• . . ( n  + l ) ) ( m  2 s  -1) 

Fo Fourier number (= -D~vt/12) 
f fugacity (N m -2) 
l length (m) 
n number of components in mixture 
R displacement (m) 
Rg gas constant (J mol i K 1) 
t time (s) 
T temperature (K) 
z lattice coordinate number 
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Greek Letters 
a numerical factor ( =  2/7r 1/2, for a 

plane sheet) 
/3 function of  the interaction energy, 

defined in equation (15) 
e interaction energy (J mol 1) 
[F] matrix of  thermodynamic correc- 

tion factors 
h displacement,  distance between 

two adjacent sites (m) 
tx chemical potential (J tool 1) 
u jump frequency ( s -  1) 
0 fractional surface occupancy 

Subscript 
I refers to interaction contribution in 

the surface chemical potential 
i,j components  i,j 
L refers to the Langmuir contribu- 

tion in the surface chemical po- 
tential 

n + 1 vacancy ( =  V) 
0 initial condition at time t = 0 

final, or equilibrium, condition at 
time t ~ 

V vacancy ( =  n + 1) 

Superscripts 
0 refers to standard state 
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